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Abstract. Ecosystem dynamics unfold into the future but are understood by examining the past. A forward-
looking ecology, which assesses a broad range of possible future ecosystem states, is the complement of long-
term, historical approaches to ecology. Together they are the ecology of the long now. The ‘‘long now’’ of
ecosystems includes historical influences that shape present ecologies, and the future consequences of present
events.

As a step in testing theories by their consequences, prediction is widely used in ecology. Ecologists have
developed, criticized, and improved many predictive theories. Ecologists also have developed many empirical
relationships that are potentially useful in forecasting. Eutrophication is an example of a problem for which
ecologists created fundamental understanding, predictive capability, and new options for management.

Ecologists frequently justify their research funding through appeals to improved predictability. This goal is
sometimes attainable and in any case motivates a considerable body of insightful research. However, in many
cases of environmental decision making, what ecologists cannot predict is at least as important as what can be
predicted. It is important to assess the full range of changes in ecosystems that may plausibly occur in the future,
and the implications of these changes. The paper discusses some ways that ecological information can be used
to improve understanding of the future consequences of present choices.
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INTRODUCTION

Ecology cannot ignore context. Biogeography, land-
scape ecology, and satellite images have helped us ap-
preciate the multiscalar nature of spatial interactions.
Spatial dynamics were the focus of one of Robert Mac-
Arthur’s enduring contributions, Geographical Ecolo-
gy (1972). History matters in ecology, so context also
involves time. Events far in the past influence present
ecological phenomena. Paleoecology, evolutionary bi-
ology, and long-term ecological research have shown
us the ever-changing variety of the natural world—‘‘the
long now.’’ The historically based branches of ecology
are an important foundation for this paper, although my
goal is to look forward in a way that is informed by
the past. The phrase ‘‘long now’’ expresses the history
dependence of the current state of ecosystems, and the
impact of current ecological processes and human ac-
tion on future ecosystems.

Stewart Brand (1999), in The Clock of the Long Now,
asks, ‘‘How do we make long-term thinking automatic
and common instead of difficult and rare? How do we
make the taking of long-term responsibility inevita-
ble?’’ Long-term perspectives are important in ecology,
and ecology can contribute to environmental problem
solving by helping to advance long-term thinking.

Why a forward-looking ecology? There are impor-
tant, fundamental, scientific opportunities in research
about the future of ecological systems. When we take
forecasting seriously, we look for connections between
slow and fast processes, or between rare events and
ecological transformations. Such connections are fun-
damental for understanding ecological systems. They
lead to multicausal, integrative explanations. Some-
times they improve ecologists’ ability to predict, al-
though this may turn out to be less important than the
understanding that derives from research that contin-
ually formulates, criticizes, and improves predictive
models. Science itself is a forward-looking undertaking
and scientific knowledge is part of the endowment we
leave to future generations. In ecology, where many
crucial variables change slowly, a legacy of long-term
observation and experiment takes on special impor-
tance. These are the shoulders we provide for future
ecologists to stand upon.

Growing human demands on the environment are
changing ecosystems in unprecedented ways with long-
lasting consequences (Vitousek et al. 1997). Will future
generations have access to resilient, functional eco-
systems? The ecology of the long now helps us un-
derstand how present ecosystem states came to be, how
present decisions impact future ecosystems, and how
systems of people and nature might be perpetuated.

Despite the usefulness of prediction as a tool for
advancing ecological research, the future of integrated
systems of people and nature is beyond the traditional
scope of ecology. This calls for new forms of ecological
research as well as creative ways of coping with an

ever-changing environment (Gunderson and Holling
2001). Science is as much about clear articulation of
what we do not know, and what we can do about it, as
it is about the known. In ecology, what we do not know,
yet could and should know, leads to creation of new
research. In ecosystem management, what we do not
know also affects choices. For example, it may suggest
policies that are precautionary, actions that are revers-
ible, and institutions that promote learning and adap-
tation. Acknowledgement of what we do not know
should lead to actions informed by awareness of our
ignorance, and thereby improve the legacy we leave
for the future.

This paper presents some principles and goals for
forward-looking ecology. It starts by recognizing an
important class of predictions in ecology: those that
are made possible by cross-scale interactions. These
are illustrated with a case history: the understanding
of lake eutrophication. The paper then addresses eco-
logical uncertainty and prospects for coping with it. At
present, forecasts for coupled systems of people and
nature have large variances, as well as uncertainties
that are unknown. Nevertheless, it may be possible for
ecologists to help frame scenarios for the range of pos-
sible outcomes, as well as discover actions that are
robust to diverse plausible futures.

PREDICTION AND ECOLOGY

Prediction is important in the practice of ecology

Prediction, in the sense of stating an explicit expec-
tation about the outcome of a study, may be a universal
feature of ecological research (Ford 2000). In ecology,
there has been considerable argument about the phi-
losophy and uses of prediction (Peters 1991, Pickett et
al. 1994). In this paper, I assume that prediction and
understanding are intertwined in the ways ecologists
think (Pickett et al. 1994, Ford 2000) and that both
theoretical and pragmatic needs will cause prediction
to persist as a component of ecology (Pace 2001).

The terms ‘‘prediction’’ and ‘‘forecast’’ have differ-
ent meanings for different professional communities
(Sarewitz et al. 2000, Clark et al. 2001, MacCracken
2001). In this paper, I will use prediction and forecast
interchangeably to mean the future probability distri-
bution of an ecological variable, conditional upon ini-
tial conditions, parameter distributions, distributions of
extrinsic drivers, and the choice of model used to make
the calculations. Ecologists use both theoretical and
phenomenological approaches to prediction. Theoret-
ical predictions are based on a theory of a process or
mechanism. Phenomenological predictions are based
on curve fitting or pattern recognition without an at-
tempt to represent underlying mechanisms. Many eco-
logical predictions, including the examples discussed
in this paper, are a pragmatic hybrid of theoretical and
phenomenological approaches. Ecological models are
frequently developed or tested by predicting the con-
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FIG. 1. Turnover time vs. spatial extent. (A) The minimal scales considered to predict a given target subsystem. (B)
Scaling relationships for predicting lake chlorophyll from nutrient inputs and the food web. (C) Scaling relationships for
predicting lake chlorophyll when benthic–pelagic interactions are considered.

temporary value of a variable from simultaneous values
of other variables. By assuming that contemporary re-
lationships hold across time (Pickett 1989), ecologists
sometimes use contemporary models to make future
predictions. The lake eutrophication example (pre-
sented in Prediction and ecology: Example: prediction
of primary producers in lakes) illustrates this approach.

Scaling relationships are cues to prediction

Hierarchical organization is a key to understanding
ecosystems (Allen and Starr 1982, O’Neill et al. 1986,
Levin 1992). Each component of an ecosystem can be
characterized by a typical spatial extent and turnover
time (or return time in the case of a stochastic event;
Turner and Dale 1998). A particular ecological question
can often be answered by addressing a small number of
dominant scales (O’Neill et al. 1986, Gunderson and
Holling 2001). These dominant scales suggest the kinds
of predictions that are possible and the drivers and equi-
librium relationships that can be used to predict (Stom-
mel 1963, Levin 1992). O’Neill et al. (1986) assert the
importance of identifying processes at three scales: the
focal scale for which predictions are to be developed;
the scale of larger, more slowly changing processes
which act as drivers or parameters; and the scale of
smaller, more rapidly changing processes (Fig. 1A).

The range of turnover times in ecosystems spans at
least 12 orders of magnitude, from the split-second
cycling of limiting nutrients to the millennial weath-
ering of rock formations, from generations of bacteria
to generations of redwoods (Hotchkiss et al. 2001,
Reed-Anderson et al. 2001). The coupling of fast and
slow across multiple time scales creates the history
dependence of ecology, driven by slow variables and
the endless evolution of novelty (Botkin 1990). Thus
ecological predictions are specific to particular time
horizons. It is possible to build predictive models for
a given time horizon, by treating slow variables as if
they were parameters. Over longer time horizons, these
‘‘parameters’’ become variables. Such differences in
turnover time can be exploited to decompose ecosystem

models into tractable components (Rinaldi and Scheffer
2001). In practice, parameter drift due to slow variables
in ecological time series can be handled by data assim-
ilation methods that discount past information (Walters
1986, Doney 1999, Cottingham et al. 2000).

Example: prediction of primary producers in lakes

Production of lake phytoplankton is the focus of a
rich literature on ecological prediction. The focal scale
is a year in a lake (Fig. 1B). Input of nutrients from
the watershed is an important driver, with spatial extent
corresponding to the watershed and turnover time pro-
portional to the terrestrial soil phosphorus cycle (Reed-
Anderson et al. 2000). Food web dynamics are another
important factor, at the spatial extent of the lake and
with turnover time proportional to the life cycle length
of the apex predators (Carpenter and Kitchell 1993).

By the 1960s, it was clear that phosphorus input was
correlated with phytoplankton biomass as measured by
chlorophyll (Fig. 2). Models based on phosphorus input
rate, mean depth of the lake, and hydraulic retention
time were commonly used to assess trophic state (Vol-
lenweider 1976). The correlation of P input and chlo-
rophyll across sets of lakes does not prove that ma-
nipulation of P input would change trophic state.
Whole-ecosystem fertilization experiments established
that P input rate controlled chlorophyll and primary
production (Schindler 1977).

Phosphorus–chlorophyll plots exhibit considerable
scatter. Many limnologists suspected that food web
structure was a factor in this residual variability (Hrba-
cek 1961, Brooks and Dodson 1965, Shapiro et al.
1975). The mechanism of food web effects was thought
to be trophic cascades: the abundance of large pisciv-
orous fishes determines the magnitude of size-selective
planktivory, which determines the size structure of her-
bivorous zooplankton and the magnitude of grazing
(Carpenter et al. 1985).

Comparative data from many lakes are consistent
with the food web hypothesis (Fig. 3). Chlorophyll is
directly related to total P concentration at spring mixis,
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FIG. 2. Chlorophyll vs. P load for the lakes sampled by Canfield and Bachmann (1981, circles) and experimental lakes
of Carpenter et al. (2001, triangles); note log scales. The Canfield-Bachmann data are for true lakes with residence time
greater than one year and no missing data (n 5 111).

FIG. 3. Chlorophyll vs. (A) total P concentration at spring overturn and (B) mean crustacean length (mm) for the lakes
of Carpenter et al. (1991); note log scales.

which is a surrogate for P input rate. Chlorophyll is
inversely related to mean crustacean length, an index
of both size-selective planktivory and grazing rate.
When a linear regression is fit to the chlorophyll–total
P relationship (Fig. 3A), the residuals are significantly
correlated with mean crustacean length (r 5 20.52,
plot not shown).

Correlations alone do not prove whether food web
manipulation changes chlorophyll in lakes. Whole lake
experiments and biomanipulations of many lakes dem-
onstrated that food web manipulations controlled chlo-
rophyll concentrations (Carpenter and Kitchell 1993,
Hansson et al. 1998). Whole-lake experiments in which
both phosphorus input and the food web were manip-

ulated show strong effects of both factors (Fig. 4). The
experimental lakes data are overlaid on the comparative
data set in Fig. 2 to show that the patterns are roughly
consistent. The experimental results show that food
web manipulation causes substantial changes in chlo-
rophyll (Carpenter et al. 2001a). Studies by many au-
thors have elaborated the mechanisms involved in tro-
phic cascades. For example, the stoichiometry of graz-
ers controls the nutrient limitation of phytoplankton
and thereby influences the magnitude of cascades (Elser
et al. 1996, 1998) and phosphorus flow through con-
sumption of benthic invertebrates is crucial for main-
taining fish predation (Schindler et al. 1995).

How has this body of research affected our ability
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FIG. 4. (A) Chlorophyll vs. P load from the whole-lake experiments of Carpenter et al. (2001); note log scales. (B)
Residuals from linear regression of data in panel (A) vs. mean crustacean length (mm).

FIG. 5. Probability distributions of chlorophyll based on (1) P input alone (circles in Fig. 2), (2) distribution 1 combined
with the crustacean length effect based on Fig. 3B, and (3) all data in Figs. 2, 3B, and 4.

to predict chlorophyll in lakes? To address this ques-
tion, I calculated predicted probability distributions of
chlorophyll for a hypothetical lake with moderate P
inputs (1.3 mg·m22·d21) and large crustaceans (1 mm)
(Appendix A). The predictions based on P input only
have a broad, flat distribution that suggests high un-
certainty about chlorophyll (Fig. 5, distribution 1). The
prediction narrows somewhat when information about
the slope of the grazer effect from Fig. 3 is included
(Fig. 5, distribution 2). However, this slope is highly
uncertain because P input rate was not directly mea-
sured for the lakes shown in Fig. 3, and P concentration
can be affected by food web structure. The experi-
mental lake data (Fig. 4) overcome this problem. When
they are included, the predicted distribution becomes

much narrower (Fig. 5, distribution 3) although it still
conveys some uncertainty about future chlorophyll.

Powerful science with unfulfilled implications

In the eutrophication example, science worked. Sci-
entists discovered relevant mechanisms at the whole-
lake scale, improved predictions (as shown by narrow-
ing of the predictive distributions), and created new
options for management of lake chlorophyll (change
phosphorus input; change the food web; or both).

These successes took a long time. The research sum-
marized in the previous section represents the effort of
scores of scientists around the world during more than
50 yr. Learning was slow, not because of intellectual
or resource limitations, but because causes were mul-
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tiple, many hypotheses (some initially promising but
ultimately unproductive) were considered, and many
years of data were needed to understand ecosystem
responses. Slow dynamics are crucial in ecosystems,
and it takes time to understand them. As noted by Hil-
born and Ludwig (1993), ecology isn’t rocket science—
it’s much harder.

Policy impact included successes such as the ban on
phosphate detergents and reduction of P inputs to eco-
systems such as the Laurentian Great Lakes. Most of
the successes apply to readily identifiable and man-
ageable point sources of pollution such as industrial
and municipal discharges. However, eutrophication re-
mains a widespread problem, often due to nonpoint
pollution (Carpenter et al. 1998). Economic analyses
frequently show that nonpoint pollution control would
increase net social welfare (Wilson and Carpenter 1999,
Carpenter et al. 1999b). Nonpoint pollution is politi-
cally contentious, because sources are diverse and mit-
igation often requires intervention on private lands. So
far the United States has failed to implement effective
policies for reducing eutrophication due to nonpoint
pollution, despite sophisticated scientific understand-
ing of the problem.

Research discovered new possibilities of
ecosystem change

As limnologists were creating predictive capability
and understanding of lake eutrophication, evidence de-
veloped showing nonlinear state changes in lakes. All
of these phenomena can be simulated using models that
include benthic–pelagic interactions (Fig. 1C). The ben-
thos adds spatial complexity, intermediate turnover
times, and a richer set of interactions. Phosphorus re-
cycling from sediment can stabilize eutrophy and delay
or prevent recovery when phosphorus inputs are reduced
(Carpenter et al. 1999b). Macrophytes can stabilize sed-
iments and sequester nutrients, thereby suppressing phy-
toplankton until a disturbance (such as grazing or high
water level) reduces macrophyte cover and shifts the
lake to a turbid state (Scheffer et al. 1993). The littoral
zone provides refuge and alternate prey for fishes, cre-
ating the possibility of collapsing predator–prey cycles
related to changing refuges (Scheffer 1998, Rinaldi and
Scheffer 2001). Littoral habitat also provides mecha-
nisms for alternating states of planktivore and piscivore
dominance (Carpenter 1988). By connecting watershed,
benthic and pelagic processes, ecologists discovered a
richer set of dynamics.

Thresholds and multiple self-sustaining states are
known from many aquatic and terrestrial ecosystems
(Carpenter 2001, Scheffer et al. 2001). Demonstrating
thresholds and multiple states is difficult. The best-
documented examples rest on multiple types of evi-
dence, including experiments to demonstrate differ-
ences among states in controlling processes, temporal
observations of state changes, comparisons of ecosys-
tems in different states, and fitting of models. As in

the lake eutrophication case, progress is slow. State
changes are infrequent events, and it may take a long
time to observe enough of them to draw conclusions.
Causes are multiple. The systems are large and com-
plex, evoking multiple competing hypotheses. It takes
many years for scientists to sort through these to gain
a synthesis of the plausible causes (Pickett et al. 1994,
Ford 2000). Thus the possibility of long-lasting or ir-
reversible state shifts in ecosystems adds significantly
to the difficulties of prediction.

PREDICTION AND DECISION

A minimal model

How should ecological predictions, and the pro-
cesses of improving them, interact with decision mak-
ing? This question will be explored using a case study.
In the Northern Highland Lake District of Wisconsin,
recreational development is altering lakeshore ecosys-
tems. Riparian forests are replaced by lawns, and fallen
trees are removed from littoral habitats (Christensen et
al. 1996). Angling effort is directly correlated with de-
velopment (S. R. Carpenter, unpublished data). Fish
growth rates are inversely correlated with development
(Schindler et al. 2000). Development is also associated
with introductions of rusty crayfish, which remove
macrophytes and directly consume fish eggs (Lodge et
al. 2000). Thus development brings a suite of changes
in nearshore habitats and angling which may cause
losses of fish diversity and production. A simple model
of this system focusing on a harvested fish population
provides a heuristic for learning and decision in sys-
tems that may exhibit alternate states.

Criteria for choosing the model were (1) simplicity,
the model should include just enough complexity to
address alternate states, learning, and decisions, but no
more (Gunderson and Holling 2001); (2) an ecosystem
service subject to management; (3) a social–ecological
framework for the service. In the model (Appendix B),
the ecosystem service is a harvested fish population.
The ecosystem context includes a food web, as well as
habitat necessary for juvenile growth and survival,
such as reefs in marine systems or fallen trees in fresh-
water. These minimal considerations lead to a model
with two alternate states. Convenient approximations
to this model can be fit by regression. Harvest can be
managed via optimal control to study the consequences
of that type of management. Other goals of manage-
ment, such as enlarging the domain of attraction of a
preferred stable state, can also be studied using the
model. While a number of models could have been
chosen for this exercise, the one presented here is suf-
ficiently rich to address learning and management in
an ecosystem context, yet transparent enough for un-
derstanding. An additional advantage is that similar
models are well studied and have many applications to
living resources (Ludwig and Hilborn 1983, Walters
1986, Clark 1990, Hilborn and Walters 1992). Although
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FIG. 6. Rates of birth and mortality (Appendix B) vs. fish population size for (A) abundant habitat (W 5 1.5) and marginal
habitat (W 5 0.5). Dotted lines show equilibria: the left point is unstable; the right point is stable. The distance between the
equilibria is the resilience. Parameter values: k 5 0.1, f 5 0.01, m 5 0.01, c 5 10, h 5 10, q 5 4, C 5 2.

this analysis focuses on a living resource, analogous
conclusions derive from biogeochemical models in
which the ecosystem service is processing of a pol-
lutant (Carpenter et al. 1999a, b).

The model (Appendix B) centers on dynamics of
adults of the harvested population. Juveniles of the
harvested population are consumed by a second spe-
cies, while adults of the harvested population prey upon
this second species. Walters and Kitchell (2001) point
out that this interaction creates alternate outcomes of
cultivation (when adults suppress the second species
and facilitate juvenile recruitment) or depensation
(when low adult densities allow the second species to
flourish and consume all juveniles before they recruit
to adulthood). The rate of juvenile mortality due to
predation by the second species depends on the quality
of habitat, which can change over time due to natural
processes or human intervention.

For appropriate parameter values, there are two steady
states (Fig. 6). The right-hand steady state is stable. The
left-hand steady state is unstable, and the population of
adults (A) collapses toward zero if it moves below the
left-hand steady state. Thus the left-hand steady state is
the threshold between collapse and persistence of the
population. The distance between the two steady states
is resilience, the magnitude of disturbance that the pop-
ulation can withstand and still persist (Holling 1973,
Gunderson and Holling 2001). Resilience is directly re-
lated to the quality of the habitat

Learning and choice

Harvest policies calculated using optimal control cri-
teria have two domains of behavior (Fig. 7). To the

right of the threshold, optimal control seeks a positive
population level that provides maximum expected yield
over infinite time. To the left of the threshold, the op-
timal policy is ‘‘use them or lose them.’’ Because the
population is collapsing anyway, the remaining indi-
viduals are harvested as quickly as possible.

In reality, a science-based manager would not know
the position of the threshold, and would rely on re-
search to approximate the dynamics by fitting models.
For the purposes of this paper, it is interesting to ex-
plore two fitted models, a density-dependent one with
no habitat effects, and a model with an additional pa-
rameter to approximate habitat effects (Appendix B).
While both models can estimate a threshold, only the
second model can capture the dependency of resilience
on slow changes in habitat.

The performance of the fitted models depends en-
tirely on the quality of the data used to fit them. In
general, there are two types of problems with ecolog-
ical data: the measurements of At (adults in year t) and
Wt (habitat quality in year t) will be noisy (observation
error), and the range of A and W levels available for
fitting the models will be limited (poorly conditioned
design matrix, as occurs when experimental or natural
variation is observed across only a limited range). Im-
pacts of observation error can be reduced by better
methods and more intensive sampling. Impacts of both
observation error and poor design can be reduced by
deliberate manipulation of A and W. An extensive lit-
erature addresses the effects of observation error on
estimation and optimal control in living resource man-
agement (Ludwig and Hilborn 1983, Walters 1986).
This important problem must be considered in actual
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FIG. 7. Optimal policies vs. stock size. Dotted line shows threshold (position of the unstable equilibrium): (A) optimal
harvest; (B) target stock size. Parameters: s 5 0.1, d 5 0.98; other parameters are as in Fig. 6 except harvest is determined
by stochastic dynamic optimization (Appendix B).

FIG. 8. Optimal harvest vs. stock size under the true model (dotted line), density dependent model (dashed line), and
habitat model (solid line): (A) data from strong manipulation; (B) data from weak manipulation.

applications. In this exercise, I wish to focus on the
design problem, and can do so more clearly if obser-
vation error is ignored. To address the design issue,
two types of data sets were generated to fit the models,
one with weak contrasts in A and W and one with ma-
nipulations of both A and W over a wide range. In the
resulting data sets, A and W were uncorrelated. Both
data sets had 2 yr of simulated observations from 25
lakes. The weak manipulation failed to discriminate the

two models (posterior probabilities of each were ;0.5).
The strong manipulation clearly identified the habitat
model as superior, with a posterior probability .0.99.

When the models were fitted to data from strong
manipulations, optimal policies were similar to those
calculated from the true model (Fig. 8A). The most
important differences occurred near the threshold,
where both fitted models tended to overharvest. The
density-dependent model overharvested more than the
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FIG. 9. Difference in utility obtained under the habitat model minus that obtained under the density-dependent model vs.
fish stock using data from strong manipulation (black line) or weak manipulation (gray line): (A) marginal habitat (W 5
0.5); (B) good habitat (W 5 1.5).

habitat model. When the models were fit to data with
weak contrast, both fitted models tended to overharvest
relative to the true model (Fig. 8B). The density-de-
pendent model overharvested the most in the neigh-
borhood of the threshold, which would increase the risk
of collapse. The habitat model recommended the larg-
est harvests at relatively high stock sizes.

How well do the fitted models perform? For a given
model, the optimal policy is the harvest schedule that
maximizes expected future catch (utility, as defined in
Appendix B). The optimal policies calculated under
each fitted model can be used to calculate the true utility
obtained from each policy. The net benefit of using the
habitat model is the difference between the utilities
obtained under each policy (Fig. 9). The difference in
performance between the models is greatest near the
threshold. Good ecological information matters most
when the risk of collapse is greatest.

The habitat model provides a precautionary signal to
the manager even when the data are weak. This signal
can be built into decision making by calculating ex-
pected future catches over both fitted models. Each mod-
el’s contribution to the forecast is weighted by its pos-
terior probability (which will be largest for the best-
fitting model). This procedure is known as Bayesian
model averaging (Raftery et al. 1997, Fernández et al.
2001).

In our example, the true model is known so the true
utility obtained under Bayesian model averaging can be
calculated. This will always be less than the utility ob-
tained by managing under the true model, because the
fitted models are always an imperfect approximation.
The difference is a measure of the performance lost due
to ignorance of the true model (Fig. 10). With strong

manipulation, the performance loss is modest. With
weak manipulation, there is a large performance loss
near the threshold—exactly the region where good in-
formation matters the most. The performance loss is
greatest when the habitat is marginal (note that the
threshold occurs at a higher fish population when W is
lower). The underperformance of the fitted models is
due to overharvesting in the neighborhood of the thresh-
old.

This example shows that quality of data is paramount.
High-quality data increase the chance of getting the
model right, and thereby discovering new management
options in manipulating habitat, the slowly changing
variable that controls resilience. In this case, high quality
is obtained by observing annual change in whole eco-
systems across a wide range of variability in A and W.
In practice, this wide range would be obtained by com-
paring a suite of lakes across broad gradients of A and
W, or by whole-lake experiments that created large and
independent changes in A and W. In general, data quality
is the magnitude of independent contrast among the driv-
ers thought to be important in the ecosystem.

The model reveals an important paradox of learning
for ecological thresholds. In the long run, knowledge of
the threshold and the underlying mechanism would im-
prove the fishery and decrease the chance of collapse.
Experimental manipulations of habitat and harvest are
the best way to learn about the threshold. However, some
of the experimental treatments run the risk of collapsing
the fishery. In practice, then, one should experiment only
when collapse is unlikely. Safe experiments are likely
to be better than no experiments at all, but may be less
informative than experiments that put the resource at
risk. For modular ecosystems, such as lakes, islands or
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FIG. 10. Difference in utility obtained under the true model minus that obtained under Bayesian model averaging vs. fish
stock using data from strong manipulation (black line) or weak manipulation (gray line): (A) marginal habitat (W 5 0.5);
(B) good habitat (W 5 1.5).

FIG. 11. Optimal harvest vs. stock size for (A) the density-dependent model, (B) habitat model, and (C) true model.
Vertical lines show the threshold below which it is assumed that the population cannot be sustained. Data are from strong
manipulation.

small watersheds, it may be possible to experiment on
a few ecosystems to gain information that applies to
many ecosystems. For ecosystems that are large and
unique, cautious experiments that attempt to learn while
avoiding thresholds may be the best option.

The model is also a metaphor for the link between
human attitudes and action. Recall that the preferred
choice (i.e., the optimum harvest) is destructive (use
them or lose them) below an estimated threshold, and

constructive (build a sustainable stock) above the
threshold. Choice depends on whether the decision
maker thinks the world is getting worse, or getting
better. The threshold between pessimism and optimism
depends on the choice of models, and the better models
have a larger domain of optimism (Fig. 11). In the
realm of human action where prophecies can become
self fulfilling, should ecologists foster pessimism or
optimism? Warnings have value, but unrelenting neg-
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FIG. 12. Cycles from the fish management game plotted in three dimensions: stock size, human users/yr, and size of the
stable attractor (cf. Fig. 6). Cycles are numbered 1 through 4; the line becomes thinner and darker as time increases. Arrows
show direction of flow.

ativity has an effect on listeners that may be different
from our intent. Constructive solutions that evoke op-
timism may come closer to our goals.

Ecological prediction and social dynamics

A more realistic analysis considers multiple decision
makers, with diverse goals and beliefs, each learning
about the ecosystem and social system while making
choices. The implications of this added complexity for
ecosystem management have been examined in several
studies (Janssen 1998, Carpenter et al. 1999a, Janssen
et al. 2000). A living resource model (similar to the
one of Appendix B) has been embedded in a model of
a recreational lake community including resident an-
glers, tourists, and a science-based management agency
(Carpenter and Gunderson 2001, Carpenter et al. 2002).
This model is programmed as a game that can be played
by one or many players. The objective is to sustain the
fish stock and the recreational economy that depends
upon it. The players can manipulate harvesting while
attempting to learn the underlying ecological dynamics.

Results typically exhibit cycles (Fig. 12) that resem-
ble the adaptive cycle of Holling (1986, Gunderson and
Holling 2001). Useful axes for understanding these cy-
cles are the size of the fish stock, the number of people
using the ecosystem each year, and ecosystem resil-
ience (as in Fig. 6). The results shown here were gen-
erated by a class of students playing the game inter-
actively. The students were divided into groups rep-

resenting resort owners, anglers, developers, and the
management agency. These groups negotiated to set
harvest limits for each simulated year. The first two
cycles had high amplitude, with a boom in human use
followed by collapse of the stock, followed by a severe
drop in human activity. By the third cycle, negotiations
led to more cautious harvest policies. The students dis-
covered that careful, brief experiments (to determine
the current sensitivity of stock to harvest, and of human
response to fishing opportunity) were useful. By the
fourth and final cycle, the oscillation was modest, strik-
ing a balance between stock size and human use while
maintaining resilience that was large relative to the
stochastic shocks experienced by the system. The group
dynamic also changed over time. Initially, debates were
intense and it was difficult for the players to find ac-
ceptable compromises. Gridlock prevented changes in
policy, and gridlock was broken only by massive crash-
es. As the players gained understanding of their col-
lective action problem, it became easier to reach con-
sensus on experimental policies. Stock declines became
smaller and less frequent.

While this game is simplistic, it demonstrates several
tenets of ecosystem management in complex, ambig-
uous situations. Avoid fixing on putatively optimal pol-
icies. Build social flexibility for exploring multiple op-
tions. Prefer reversible actions. Experiment when it is
safe to do so. Seek leading indicators of ecological
dynamics, such as resilience. Resilience and its sur-
rogates reside in the slowly changing variables.
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COPING WITH THE LIMITATIONS OF

ECOLOGICAL FORECASTS

Some important uncertainties are irreducible

What are the limits of ecological prediction? All quan-
titative ecological predictions are probabilistic. Often
variances are large. Sometimes new research can im-
prove predictions in a reasonable amount of time. For
example, where fast variables to be forecast are embed-
ded in slowly changing processes, research may increase
predictive capability, as in the case of lake eutrophi-
cation. In other cases, slowly changing variables may
expose thresholds, and thereby cause surprising dynam-
ics that are hard to predict (Rinaldi and Scheffer 2000,
Scheffer et al. 2000, Carpenter 2001). Ecological pro-
cesses that generate unpredictable dynamics include
evolution of resistance in pests or spread of newly in-
vasive species. While we expect that resistance will
evolve and species will invade, predicting specific in-
stances of evolution or invasion is difficult.

The future dynamics of ecosystems are contingent
on drivers that are outside the domain of ecology, such
as climate change, human demography, or globaliza-
tion of trade. The probability distribution of ecological
predictions depends in part on the distributions of such
drivers, but future driver distributions may be unknown
or unknowable. Therefore the uncertainty of the eco-
logical predictions cannot be calculated. The shortcom-
ings of other disciplines’ predictions are described by
Sarewitz et al. (2000) for the geosciences and Sherden
(1998) for climate, demography, and economics. These
books offer strong cautions for predictive ecology.
Ecologists can and should consider the ecological con-
sequences of the major trends of our time, such as
climate change, human population, and the global
economy. Such projections, however, do not have the
status of fully quantified probabilistic predictions.
Ecologists have been appropriately frank about this
shortcoming, reflected in words like ‘‘projection’’
(Melillo et al. 1995) and ‘‘scenario’’ (Nakicenovic and
Swart 2000, Sala et al. 2000).

Coupled social–ecological systems are exceptionally
difficult because of unknown feedbacks and unpre-
dictable human actions. Suppose, for example, that
ecologists could generate credible predictions of eco-
system services on time horizons relevant to human
action. People would then act upon the forecasts, per-
haps in surprising ways (e.g., unforeseeable techno-
logical innovations), and sometimes cause the forecasts
to be wrong. Because of the reflexive interactions of
people and ecosystems, forecasts for ecosystems that
are affected by human action (i.e., all ecosystems of
earth at the present time) are highly uncertain. Even
the uncertainties are uncertain, because we do not know
the set of plausible models for the dynamics of the
probability distributions. Conveying uncertainty is dif-
ficult (Anderson 1998) and this problem is compounded

when the probabilities themselves are unknowable
(Funtowicz et al. 1999, Cooman and Walley 2000).

The usual tools of decision analysis do not apply to
problems in which objectives are ambiguous and there
are multiple, contradictory approaches, each one plau-
sible from a particular viewpoint (Funtowicz et al.
1999, Ludwig 2001, Ludwig et al. 2001). The appro-
priate models cannot be identified. Each interest group
may construct models convenient to its preferences, but
there is no basis for assigning greater credibility to one
model vs. another. Diverse definitions of social welfare
are in play, and many different actions appear equally
likely to meet social goals. The role of scientists in
such an ambiguous decision setting is different from
our role in situations where the probabilities and pref-
erences are known. In the latter case, finding the op-
timal path is a purely technical problem. In the am-
biguous case, science can help envision possible fu-
tures and discover robust win–win options. This is clos-
er to the role of science in scenario exercises.

Imagining the possible

Scenarios are a method for bringing future consid-
erations into present decisions when prediction is not
possible (Schwartz 1996, van der Heijden 1996). Their
purpose is to broaden perspectives, open new ques-
tions, expose possibilities for surprise, and raise chal-
lenges to conventional thinking (Greeuw et al. 2000).
A scenario is a narrative of a possible future. The sce-
nario is not a prediction; it is a plausible future that
merits consideration. Scenarios are considered not sin-
gly but in sets of three or four scenarios that collec-
tively represent a useful range of ambiguous and un-
known outcomes (Schwartz 1996, van der Heijden
1996). Differences among the scenarios embrace a
range of ambiguous, uncontrollable aspects of the fu-
ture. The scenarios provide a framework for finding
robust decisions that have acceptable consequences no
matter how events turn out. Scenarios may not lead to
a unique optimal decision. Instead, they make it pos-
sible to compare possible actions in light of diverse
models, multiple causes, and ambiguous, uncontrol-
lable aspects of the future.

Scenarios encourage action, whereas uncertainties
sometimes lead to doubt, inaction, and further analysis.
Honest and accurate assessment of uncertainty is an
important function of science, yet we need more than
just a measure of uncertainty. Scenarios present the
range of possibilities in tangible, evocative statements
about alternative futures. By bringing alternative pos-
sibilities to life in the form of realistic narratives, sce-
narios may motivate action. Scenarios bring science
into decisions that must be made now, rather than after
further research.

The scenario approach has already had an impact on
ecological research and environmental management.
Examples include scenarios of future biodiversity and
ecological responses to climate change (Melillo et al.
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1995, Sala et al. 2000). Environmental scenarios were
presented by Raskin et al. (1998) at a global scale, and
at continental scale for Australia by Cocks (1999). Eco-
logical information has also been included in scenarios
developed for other purposes. For example, U.S. Cen-
tral Intelligence Agency (2000) scenarios consider eco-
system services that affect environmental security.

In scenario exercises, ecologists play the dual roles
of imagining and disciplining accounts of the future.
A plausible scenario is consistent with state-of-the art
ecological understanding. Fair, insightful criticism by
ecologists is therefore a necessary step in the construc-
tion of scenarios. This type of activity is familiar to
scientists. We are less familiar with our role in creating
scenarios that evoke insight and change (although this
activity has similarities to teaching or storytelling). The
success of a scenario exercise depends on many factors,
not just the quality of the ecological input. Yet, sce-
narios of future environments demand information that
can only be provided by ecologists.

Everything we do must first be imagined. How can
scientists improve the processes of creativity and re-
newal that lead to adaptive responses? One approach
attempts to build both ecological resilience and insti-
tutions that foster learning and innovation (Gunderson
and Holling 2001). Resilience can be manipulated to
collapse undesirable ecosystem structures, or to make
desirable ones more robust (Carpenter et al. 2001b). In
principle, individual decision making could be aligned
with ecological factors to reinforce desirable ecosystem
states. Understanding how this might be achieved in
practice requires input from ecologists, other disci-
plinary specialists, and the individuals living in the
social–ecological system.

ECOLOGICAL FUTURES AND THE FUTURE

OF ECOLOGY

Scenarios are more than science. Unlike scientific
theories, models, or hypotheses, scenarios are not test-
ed (in the sense of determining consistency with extant
or readily attainable data). Instead, alternative policies
are tested for robustness against a set of diverse sce-
narios. Even though scenarios are not scientific con-
structs, science must play a central role, both in cre-
ating scenarios and ensuring that they are consistent
with current ecological understanding.

Ecologists must embrace a bipolar stance toward pre-
diction. At one pole, ecologists strive to expand our
capabilities to forecast ecological change for spatial
extents and time horizons of human action (Clark et
al. 2001). A culture of prediction and rigorous assess-
ment of probabilities will improve the science of ecol-
ogy. Development of predictive capability will take
time. As in the case of lake eutrophication, progress
will be deliberate and painstaking because ecosystem
dynamics are slow, causes are multiple, and hypotheses
are numerous and difficult to discriminate. Some kinds
of ecological prediction are impossible given our cur-

rent capabilities. Nevertheless, prediction has an im-
portant role in ecological research and also contributes
to various tools for environmental problem solving,
including scenarios.

At the opposite pole, ecologists must acknowledge
the shortcomings of ecological predictions and frankly
admit when prediction is inappropriate. This implies a
broader perspective on the uses of ecology, which will
expand the field and increase its impact.

Faced with uncertainty and ambiguity, decision mak-
ers have a number of options, only one of which is to
learn (Stein and Fineberg 1996). Other options involve
making choices that are robust to a range of possible
futures, and seeking ways to cope with uncontrollable
change and unpredictable surprise. In these areas, eco-
logical expertise is underused. Some ways that ecol-
ogists can help cope with the ambiguous and uncon-
trollable are (1) Understand how ecological persistence
derives from connections of slowly changing processes
or disturbance regimes to more rapidly changing pro-
cesses. These connections are especially relevant for
creating and maintaining robustness to cope with future
change. They require sustained ecological research be-
cause dynamics are slow and regime shifts are infre-
quent (Likens 1992). (2) Provide blunt assessments of
the uncertain outcomes of proposed environmental in-
terventions. Emphasize the importance of evaluating
any policy proposal (including the status quo) against
a wide range of plausible outcomes, hedging bets,
choosing reversible actions, experimenting, monitor-
ing, and learning. (3) Develop scenarios of future ecol-
ogies on time horizons meaningful to people (years to
decades). What worlds are possible, and how might
they be attained? How are these future outcomes a leg-
acy of present decisions? These challenges to ecolo-
gists suggest new research agendas—on prediction at
scales relevant to human action, limits of prediction,
construction of insightful scenarios, and discovery of
robust options for ecosystem management. These goals
follow from the ecological discovery that ‘‘now’’ ex-
tends a long time into the future.
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APPENDIX A

An appendix outlining the calculation of probability distributions is available from ESA’s Electronic Data Archive: Eco-
logical Archives E083-037-A1.

APPENDIX B

An appendix outlining the depensation model, estimation, and policy choice is available from ESA’s Electronic Data
Archive: Ecological Archives E083-037-A2.




