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The world is experiencing significant, largely anthropogenically induced, environmental change.
This will impact on the biological world and we need to be able to forecast its effects. In order
to produce such forecasts, ecology needs to become more predictive—to develop the ability to
understand how ecological systems will behave in future, changed, conditions. Further development
of process-based models is required to allow such predictions to be made. Critical to the develop-
ment of such models will be achieving a balance between the brute-force approach that naively
attempts to include everything, and over simplification that throws out important heterogeneities
at various levels. Central to this will be the recognition that individuals are the elementary particles
of all ecological systems. As such it will be necessary to understand the effect of evolution on eco-
logical systems, particularly when exposed to environmental change. However, insights from
evolutionary biology will help the development of models even when data may be sparse.
Process-based models are more common, and are used for forecasting, in other disciplines, e.g.
climatology and molecular systems biology. Tools and techniques developed in these endeavours
can be appropriated into ecological modelling, but it will also be necessary to develop the science
of ecoinformatics along with approaches specific to ecological problems. The impetus for
this effort should come from the demand coming from society to understand the effects of
environmental change on the world and what might be performed to mitigate or adapt to them.

Keywords: ecological modelling; prediction; climate change; evolution; systems biology;
global circulation model
‘We appeal to the notorious fact that ZOOLOGY, soon
after the commencement of the latter half of the last

century, was falling abroad, weighed down and

crushed, as it were, by the inordinate number and

manifoldness of facts and phenomena apparently

separate, without evincing the least promise of system-

atizing itself by any inward combination, any vital

interdependence of its parts’.

Samuel Taylor Coleridge [1]
The ability to predict, to forecast how a system might
behave in the future, is a key feature of any science.
Prediction is, according to, the Nobel laureate, immun-
ologist and philosopher of science, Peter Medawar, a
‘property that sets the genuine sciences apart from
those that arrogate to themselves the title without
really earning it’ [2]. Some subjects, e.g. economics,
engineering, climatology, routinely make predictions
that others can use; and people are prepared to rely
r and address for correspondence: School of Biological and
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on them as a guide to the future, despite them some-
times, in the light of experience, being inaccurate. It
was a premise of the Royal Society discussion meeting,
upon which this volume is based, that ecology needs to
become more predictive, especially in the context of
creating an understanding of the way in which biologi-
cal systems might respond to environmental change. It
is well understood that making predictions about how
any system will behave in novel circumstances is diffi-
cult. Making predictions about how noisy ecological
systems will behave when exposed to large-scale
environmental changes will be extremely difficult [3].
Nevertheless, there is a demand for the production of
such predictions in order to understand the possible
impacts of phenomena such as habitat fragmentation,
climate change, invasive species, over-exploitation and
pollution on the biological world [4].

Quantification in ecology has historically been
focused on the problem of trying to discern the effects
of parameters of interest within noisy, real-world
systems. Therefore, ecologists have typically been
concerned with producing predictions within the
observational bounds of their datasets; describing the
behaviour of complicated systems has been enough
of a challenge. It is our contention that ecologists
This journal is q 2011 The Royal Society
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need to embrace the further challenge of developing
truly predictive models of their systems, models that
can be cast into future, often novel, conditions in
which the systems have not yet been observed. We
believe that this is necessary to allow ecologists to
improve their understanding of the systems they
study but is particularly important to enable us to
address questions about the impact of environmental
change on the biological world. Anthropogenic
environmental change is creating novel environmental
conditions and we need to develop the ability to fore-
cast the way in which ecosystems, components of
ecosystems and the services we derive from them,
will alter as conditions change [5]. Although, at least
conceptually, this problem could be approached
empirically—perhaps by experimentally manipulating
a system, this would be extremely difficult at any
significant scale; the most likely way to predict the
future state of ecological systems will be through
modelling.

The first issue encountered in the development of a
model is that all models are abstractions; it is obviously
impossible to include every aspect of the real world in
any model. Once a modeller recognizes that they
cannot include all variables in a model, they have to
make decisions about which to retain in the model
and which to omit [6]. Such decisions will modify
the outcomes achieved by a model and the process
should be guided by the modellers’ objectives. This
is, at heart, a philosophical question and although
they would not often recognize they are doing so, eco-
logical scientists are constantly making decisions based
on a philosophical stance [7]. Model building, in
particular, needs to be conducted with an eye to
philosophy; for example, whether one believes that a
model can be both maximally general (apply to many
systems) and realistic (produces predictions that are
accurate reflections of a specific system) [7–9], or
believes that these two desirable model attributes
cannot be simultaneously maximized [10–14], is a
philosophical stance. One’s answer to this question
should influence one’s opinion about how to proceed
in modelling the ecological impact of environmental
change. If a realistic model is needed, so that its
output can be used to understand a real-life system
(i.e. if we wish to use the model to inform us about
the fate of a particular system) then, if you believe
that generality and realism cannot be simultaneously
maximized, you should reject the simple-but-general
approach that gives preference to attaining analytical
soluble formulations [15], because such models are
difficult to use for the purpose of generating realistic
answers for specific systems of interest [16].

An important feature of anthropogenic environ-
mental change is that it produces novel conditions.
This presents challenges for modelling as statistically
derived functions cannot legitimately be projected
beyond the bounds of observation, leading one to con-
clude that phenomenological models should not be
projected into novel conditions [16]. If this is the
case then neither of the two modelling paradigms
that dominate ecology today—simple regression-
based models and analytical simplifications containing
a small number of parameters—will be particularly
Phil. Trans. R. Soc. B (2012)
useful in the endeavour of making ecological pre-
dictions, and so an alternative approach is needed.
A systems approach in which characteristics of one
level in a hierarchy are explored as emergent properties
of processes lower down in the hierarchy [17], will be
essential for making ecological predictions in novel
conditions. This is because systems approaches do
not assume that a description of a system will remain
valid indefinitely (as do phenomenological models by
definition), they rely on the fact that the internal pro-
cesses will continue to operate into the future and that
their operation will be in some way altered by the
changed conditions. The higher order emergent prop-
erties alter as a consequence of the changes in the
internal processes not because the higher order effects
themselves have been projected into the future.

The adoption of a systems approach to the analysis
of ecological systems is not novel. Systems ecology was
the term used to describe the approach promulgated
by the International Biological Programme (IBP) in
the 1960s [18,19]. The aim of this approach was to
measure as many aspects of the ecological system as
feasible and then search for relationships and link
data together using the abilities created by the comput-
ing power that was then becoming increasingly
available [19]. The systems ecology of the 1960s did
not develop into a major activity in subsequent years
and the funding for the IBP ended in 1974, partly
because of the criticism it received on philosophical
grounds from other prominent ecologists, particularly
Levins [10,12]. However, as succinctly stated by
Peter Hudson in the discussion meeting ‘the world
has moved on since the 1960s’. At the very least,
there has been substantial progress in the scale of com-
puting power; according to Moore’s Law since 1960
computing power has increased by a factor of approxi-
mately 5 � 107, but there has been simultaneous
increase in our ability to collect data through both
remote and miniaturized technologies. Perhaps even
more importantly, behavioural ecology [20] and life-
history theory [21] have emerged successfully to pro-
vide functional explanations for individual behaviours
and decision-making. Therefore, unlike the 1960s,
we have explanations for why organisms behave in
the way that they do, as well as what they do.

One difference between ecology in 2011 and ecology
in the 1960s is that we have increasingly detailed studies
on model systems. One of these is the soil mite,
Sancassania berlesei, which has been the subject of
study for 15 years by Benton and co-workers. A pro-
cess-based model which incorporated eight ‘genes’
(more correctly allocation rules) that controlled the
way in which individual mites use resources displayed
how rapidly the signature of evolutionary change can
be seen in the population dynamics (number of adults
and juveniles both decline over times), life-history par-
ameters (egg size and mean size at maturity increase
and per capita fecundity decreases) and resource allo-
cation rules [22]. Similarly, an examination of the
influence of positive feedback mechanisms on evolution-
ary change suggests that organisms can move between
alternative stable states rapidly, if selection pressures
change and they are flipped from stable state into the
basin of attraction of an alternative stable state [23].
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All ecologists will, of course, be aware of evolution but
there is a tendency to ignore its effects once one
moves beyond the individual level of organization. The
prospect of both predicting into the future and that
the future into which we might wish to make predictions
will be different from the present makes the case for the
inclusion of evolutionary change into ecological models.

Including evolution within ecological models is logi-
cal if we know that the signature of evolution can be
seen in the timescale of our models. But the need to
include evolution in ecological models is not simply
a matter of ‘if we know it exists then we should
include it’. Ecological and evolutionary change are
intertwined—population dynamics are the product of
the realized life histories (a product of selection) of
individuals within the population, whereas the strength
of selection is modified by properties of the population
(e.g. density) [24]. Including evolution will add a level
of complexity, but work in evolutionary ecology pro-
vides us with tools to start addressing these issues.
For example, if we know that organisms act so as to
maximize relative fitness [25,26], then we have a con-
ceptual basis for modelling life-history decisions of
organisms, even when we have sparse information
about their biology. Including evolution may make
modelling with limited data more straightforward.
This is particularly important given the recognition
that individuals experience different environments,
make different life-history decisions, and therefore
vary in their demographic traits, with this inter-
individual variance being important for population
and evolutionary dynamics. Further embedding
evolution in ecological thinking would allow greater
appreciation of the relationship between biological
processes at the individual level and the population,
community or ecosystem results of these processes. If
novel environmental change imposes selection pressures
that cause the components of an ecological system to
evolve and if this evolutionary process affects the way
that system functions, then evolution cannot be ignored.

Despite the desirability of including evolution in
ecological models, the most successful group of
process-based models in ecology—the terrestrial bio-
sphere models do not do so [27–31]. This may be
due to the fact that their raison d’être is to predict
changes in the forest community and so even though
they have long simulated run times—typically 1000
years, the organisms within them also have long gener-
ation times. Long generations relative to model run
time, coupled with relatively weak selection pressures
that are largely independent of life-history traits (i.e.
areas are usually either clear-felled or left alone) may
mean that selection can be safely neglected in these
models. However, the same would not be true of the
populations of herbivorous insects that might live on
such trees. A good example of the value of incorporating
evolution into ecological models is seen in the analysis of
fisheries data. Fishing exerts strong directional selection
on fish stocks as it typically removes large adult fish from
the population. Fish populations of several species have
responded to such selection by maturing earlier and
smaller [32,33]. The commonest form of fishing man-
agement—imposing a quota that can be filled after
which no fish can be landed—appears to result in
Phil. Trans. R. Soc. B (2012)
more rapid evolutionary change than either constant
rate harvesting or the maintenance of a constant stock
population [34]. These evolutionary changes then trans-
late into more rapid decreases in population biomass in
a stock managed by a quota system than in one mana-
ged by alternative approaches [34]. The conclusion
from this must be that the consequences of evolutionary
change on stock abundance and sustainability need to
be taken into account when considering management
options and that this can be achieved only by incorpor-
ating evolution into the ecological models that underpin
decision-making in fisheries. In addition, these examples
make it clear that there are ecosystem-level conse-
quences of the evolutionary process created by fishing
pressure; this feedback clearly needs to be understood
before we can understand fully the consequences of
the fishing pressure on ecosystem function.

Terrestrial biosphere models show the levels
of complexity that can currently be achieved using
process-based models. Medvigy and Moorcroft demon-
strate that the terrestrial biosphere model Ecosystem
Demography 2 (ED2) parametrized using 2 years of
data from a single (relatively small) site can make accu-
rate predictions of the patterns of biomass dynamics
and community composition over a region of northeast-
ern North America spanning about 158 of longitude
and 108 of latitude [35]. This region spans ecosystems
that range from almost entirely deciduous forests in
the south to conifer-dominated forests in the north
and varies hugely in climate forcing and land-use
history. The heterogeneity of the output across the
region is driven by the differential responses of
the five plant functional types within the model. An
interesting observation is that ED2’s predictions for cer-
tain parameters begins to drop off in the highest
latitudes, probably because of the fact that the domi-
nant late-successional tree in this region is not found
in the site used for parametrization, raising the possi-
bility that additional functional types may be need to
be added to the model the further it is extended away
from the area from which its parameters are derived.
ED2 uses size- and age-structured partial differential
equations to approximate the first moment behaviour
of a stochastic individual-based model [27,36]. The
process of using such an approximation makes
the model more computationally tractable but means
that information is lost about individual heterogeneities.
Clark et al. [37] argue that as it is individuals rather
than populations that respond to climate through their
responses to weather conditions, then it is important
to track responses to climate on an individual basis. Vul-
nerability of a species to climate change can be inferred
by aggregating individual-level data [37]. This is a
specific example of the general principle that individual
organisms are the elementary particles of ecology [38].
The basic level of ecological heterogeneity is found at
the level of the individual, although one must recognize
that individuals are themselves emergent properties of
interactions between genes in a particular environ-
mental context. Inter-individual variation provides the
raw material for natural selection (and through the
differential success of individuals we get gene-level
selection), and is the basis for ecological heterogeneity
in both space and time. Models must make simplifying
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assumptions in order to make their problems tractable
[6,10]. Any process that discards heterogeneity will
result in the loss of information about the system,
whether this is the selection of functional types rather
than species [35], population averaging of survival
and growth rates rather than accounting for the import-
ance of individual interactions [37] or assuming that
species range may be adequately described by a few
climatological parameters [39]. The heterogeneity at
different levels of organization and how this affects
emergent properties at higher levels of organization
needs to be considered. Any loss of heterogeneity is
likely to alter the outcome of the model and the key
issue is whether it does so in an important manner.

It would be difficult to locate an ecosystem that had
escaped modification by humans in some manner. The
meeting presupposed the need to consider the ecologi-
cal impact of anthropogenic environmental changes
as a major rationale for the need to make ecological
predictions. Clearly, human activity often plays an
important role in structuring ecosystems and is fre-
quently a driver of change within ecosystems [40,41].
The exclusion of humans from ecological models
seems artificial, and although there are some good
examples in which individual- or agent-based models
of human populations (agent-based models (ABMs)
in the social sciences being essentially similar to indi-
vidual-based models in ecology) and biosphere
models have been successfully coupled to produce
predictions about the fate of the ecosystem and conse-
quences to the human population [42], these are
unusual. Agent-based modelling is regarded as an
appropriate tool for understanding human decision-
making and is often used in models of human–
environment interactions [40,41]. Rounsevell [40]
identifies that many of the issues that concern the eco-
logical community about individual-based models
(IBMs) are also of concern to social scientists using
ABMs of human systems. For example, processes
need to be scaled both out and up to include larger
geographical areas (out-scaling) and to aggregate indi-
viduals into groups (up-scaling). These would be
familiar problems to people concerned with using
IBMs and there may be parallel solutions in, for
example, the use of stage- and age-structured approxi-
mations to scale out [35] and functional types to scale
up [40], although any such approximations would
inevitably result in a reduction of individual-level het-
erogeneity in the model, which if it influenced the
outcome in important ways might be of concern [37].

Human behaviour is frequently the target of policy
interventions both by agencies attempting to create
their desired conservation outcomes [17,41] and
by institutions and governments [40]. The fact that
humans often modify their behaviour extremely
rapidly in response to an intervention can mean that
there are unintended outcomes of well-intentioned
interventions; for example, the fact that acquisition
of land for nature conservation can impact upon
local land prices potentially results in landowners
being tempted by higher prices to put additional
land on the market leading to a counter-productive
effect on biodiversity outside protected areas if this
land is then developed [43]. Milner-Gulland [41]
Phil. Trans. R. Soc. B (2012)
points out that such dynamic behaviour by people
results in statistical models only being predictive
while the conditions under which the model was cre-
ated prevail. This is a special case of the inevitable
problems associated with using phenomenological
models: statistical functions cannot be legitimately
projected beyond the bounds of observation [44].
Process-based systems models are therefore needed
to understand the dynamics of socio-ecological sys-
tems; such models could allow the appropriate
feedbacks between levels (e.g. management actions,
resource user decisions and ecological sustainability)
to be incorporated [41] in much the same way as
they are needed to understand the impacts of environ-
mental change on ecosystems, again with feedbacks
between levels (e.g. individuals, populations, com-
munities, ecosystem). If we believe that humans are
both key to the functioning of many ecosystems (e.g.
humans maintain habitats such as grouse moors in
their present state) as well as drivers of change in eco-
systems (e.g. humans take decisions to change from
managing a moor for grouse to forestry), then such
models will only be complete when they incorporate
both the human and ecological systems.

Process-based models that incorporate realistic
amounts of complexity will be computationally and
technically demanding. Systems approaches are much
more familiar in other disciplines than they are in ecol-
ogy and it will be possible to acquire skills, techniques
and approaches from fields such as climatology and
molecular systems biology. Bioinformatics has trans-
formed molecular biology; a combination of the
availability of high-throughput data and computing
power led to the emergence of molecular systems
biology in the last years of the twentieth century [45].
There are now a range of techniques available to mol-
ecular biologists who wish to adopt a systems
approach to modelling, some of which can be applied
to ecological datasets [46]. Bioinformatic techniques
were applied to almost 50 years of fisheries data from
the Georges Bank, East Scotia Shelf and North Sea to
determine the species relevant to the functional collapse
of the cod stocks in Georges Bank. The same model was
then applied to the other two areas. An interesting result
from this analysis suggests that very different species
seem to play equivalent roles in the functional collapse
of the three ecosystems, namely zooplankton species in
Georges Bank, deepwater fish species on the East
Scotian Shelf and commercially exploited demersal
species in the North Sea [46]. It also suggests that
there is a parameter(s) external to the fishery that influ-
ences its collapse; it would be difficult to detect such a
parameter in conventional analyses of fisheries [46].

In molecular biology, data can emerge from high-
throughput machines and the challenge is usually in
handling and processing data volumes, but ecological
data are usually less abundant and are often less
easily sourced. To combat this, a significant advance
could be made in ecology if scientists working in the
discipline adopted the habit of data-sharing (see
http://www.datadryad.org), a habit that prevails in
many other areas of science—including molecular
biology. As a result of restricted, often private, knowl-
edge of the existence of particular data, it is not always
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clear what is known and it is highly likely that the data
are available to allow us to know more than we think
we know. If data sharing became the norm it is
likely that, as in molecular biology, the benefits
would far outweigh the costs [47]. The development
of the bioinformatics of ecology, ‘ecoinformatics’
[46], will be facilitated by the development of new
analytical tools as well as by the adoption of tools
from elsewhere. Pattern-orientated modelling (POM)
may be such an ecoinformatic tool. POM concerns
itself with identifying a set of patterns that can be
observed at different scales and levels and are associ-
ated with a real-life problem of interest. Models from
which the same patterns emerge are likely to contain
the right mechanisms to describe the problem [48].

We should also not forget that some areas of ecology
have taken more steps down the path of adopting sys-
tems thinking than others. The biosphere models are
an example of a process-based approach applied to
one trophic level of an ecosystem [27–31,35]. There
have been moves in the direction of adding further
trophic levels; for example, some similar models
include bark beetle-induced mortality [49] and the
effect of pine beetle outbreaks on productivity and
carbon capture and storage [50]. One sphere of
activity in which the use of systems approaches may
be inevitable is in the analysis of ecosystem service
provision; for example, an analysis of changes in one
ecosystem service—soil carbon—required systems
thinking because the output was dependent on diverse
components of the system, ranging from the climate to
anthropogenic land use to biogeochemistry [51]. The
consideration of the provision of ecosystem services
moves us to the position where we need to consider
the values and benefits of those services, rather than
traditional arguments about the preservation of
iconic species or habitats [17]. This means that we
will need to consider more fully the way in which
these parameters depend on the changes in
biodiversity created by environmental change. This
almost inevitably becomes a problem that requires a
systems approach, as changes in the value of goods
and services emerge from ecosystem processes at
various levels [17].

It would be a travesty of the process-based approach
advocated here to suggest that it meant that every
individual organism in an ecosystem needed to be
included in a model of that ecosystem in order to
make useful predictions about it. Not only would
such a naive exercise be extremely difficult to construct
and parametrize, but also it would be almost imposs-
ible to comprehend and would probably exceed the
ability of even modern computers to run the compu-
tations [10]. One challenge for a modern formulation
of systems ecology will be to create models of the
‘appropriate’ complexity. The appropriate heuristic is
‘Einstein’s razor’: ‘everything should be as simple as
possible, but no simpler’ [52]. Global circulation
models (GCMs) are good examples of predictive mod-
elling and have developed both great explanatory and
persuasive power. GCMs are process-based in the
sense that climate is an emergent property of the pro-
cesses internal to the system, yet many of those
internal processes remain as black boxes and many
Phil. Trans. R. Soc. B (2012)
are recognized as being in need of refinement, e.g.
the biosphere–atmosphere feedbacks [53]. Predictive
models of ecosystems will need to tread a line between
increasing complexity and decreasing comprehensibil-
ity; the position along such a line will depend on the
needs of the end user. It is possible that if the end
user is a policy-maker (in a general sense), then it
may be unnecessary to have models with continuous
distributions of states—categories may be sufficient
and it may be possible to consider the probability of
transitions occurring between categories instead of
displaying, possibly, artificial levels of precision [54].

If we are to move ecology towards prediction,
especially if we are to embrace the need to make eco-
logical forecasts about the impact of environmental
changes on the biological world [5], then we will
need to further engage with process-based ecological
models. We believe that there is a good philosophical
basis for so doing, especially if we are concerned
with making predictions outside the range of con-
ditions within which data were collected [16], but
also if we are concerned with making predictions that
are realistic rather than general [16] (see also [7]).
We believe that there will be challenges and opportu-
nities in this endeavour; for example, the inclusion of
evolutionary change into ecological models will be
necessary in a way that is required in neither physi-
cal science models nor molecular systems biology
[24,55,56]. Evolution can happen surprisingly quickly
[22,23] and it will not be reasonable to keep the
distinction between the evolutionary play and the eco-
logical theatre [55]. Simplifying assumptions will be
necessary to make ecological systems models analyti-
cal, and computationally and intellectually tractable.
The heterogeneity between individuals matters in ecol-
ogy, unlike in physicochemical systems (although such
systems may be as stochastic as ecological ones). There
is heterogeneity at all levels and it can affect the out-
come of our processes [35,37]. Ecological models
will be made additionally complicated by the need to
include humans if, as they often will be, they are
important ecological players as well as drivers of eco-
logical change [40,41]. However, socio-ecological
modellers already use ABMs that are well adapted to
integration with process-based ecological models. In
order to help with the endeavour of creating a
modern systems ecology, there are techniques and
approaches that already exist in other fields and
which can be applied to ecological systems [46]. If
we wish to consider the creation of an ecological par-
allel to bioinformatics, then we will need to create
new tools and approaches to allow us to cope with
the fact that ecology has different constraints and
advantages to molecular systems biology [48]. Further
developing systems ecology to a point where it can
make useful predictions about the ecological impact
of environmental change, equivalent to those regularly
made by climatologists using GCMs about the future
state of the climate, will be demanding. Nevertheless,
the need from society to maintain and improve its eco-
system services, all of which derive from ecological
systems, should provide sufficient imperative to over-
come these complexities [17]. Reaching this point
would bring significant benefits; not only will it
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increase our comprehension of the natural world but it
will also help us move towards truly predictive ecology.
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